FA Series for Large Backup Current Capacitors

The FA series is suitable for supplying a large current in a short time.
These capacitors are ideal for momentarily backing up a high-current, short-time load in an electronic system (in the event of momentary power failure).

Features

- Extremely low equivalent series resistance (ESR) ideal for supplying backup current of 10 mA to 1 A for a short time
- High breakdown voltage (maximum operating voltage: 11 V) that can drive microcomputers and actuators

Applications

Momentary backup of microcomputers and DRAMs and auxiliary power supply of mechanical systems (motors, relays, electromagnetic valves)

Part Number System

FA \quad\begin{tabular}{c}

$\mathbf{0 H} \quad \mathbf{Z} \quad$| Capacitance tolerance: $+80 \%,-20 \%$ |
| :---: |
| Capacitance: 0.047 F |
| First two digits represent significant figures. |
| Third digit specifies number of zeros to follow microfarad code. |

Maximum rated voltage: $0 \mathrm{H}: 5.5 \mathrm{~V}$ (Marking: 5 V)

$1 \mathrm{~A}: 11 \mathrm{~V}$ (Marking: 10 V)
\end{tabular}

Super Capacitor: FA series

Markings

Markings are made with black ink on the green sleeve.

Dimensions and Standard Ratings

Part No.	Dimensions mm (inch)						Weight
	D	H	P	di	d_{2}	L	g (oz)
FA0H473Z	$\begin{array}{\|c\|} \hline 16.0 \\ (0.630) \end{array}$	$\begin{gathered} 15.5 \\ (0.610) \end{gathered}$	$\begin{gathered} 5.1 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.016) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.047) \end{gathered}$	$\begin{gathered} 5.0 \\ (0.197) \end{gathered}$	$\begin{gathered} 6.2 \\ (0.219) \end{gathered}$
FA0H104Z	$\begin{array}{\|c\|} \hline 21.5 \\ (0.846) \\ \hline \end{array}$	$\begin{gathered} 15.5 \\ (0.610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.6 \\ (0.3) \\ \hline \end{gathered}$	$\begin{gathered} 0.6 \\ (0.024) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.047) \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ (0.217) \end{gathered}$	$\begin{gathered} 12 \\ (0.423) \end{gathered}$
FA0H224Z	$\begin{gathered} 28.5 \\ (1.122) \end{gathered}$	$\begin{gathered} 16.5 \\ (0.650) \end{gathered}$	$\begin{aligned} & 10.2 \\ & (0.4) \\ & \hline \end{aligned}$	$\begin{gathered} 0.6 \\ (0.024) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.055) \end{gathered}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} 25 \\ (0.882) \end{gathered}$
FA0H474Z	$\begin{array}{\|c\|} \hline 36.5 \\ (1.437) \end{array}$	$\begin{gathered} 16.5 \\ (0.650) \end{gathered}$	$\begin{array}{c\|} \hline 15 \\ (0.591) \end{array}$	$\begin{gathered} \hline 0.6 \\ (0.024) \end{gathered}$	$\begin{gathered} 1.7 \\ (0.067) \end{gathered}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} \hline 42 \\ (1.482) \end{gathered}$
FA0H105Z	$\begin{gathered} 44.5 \\ (1.752) \end{gathered}$	$\begin{gathered} 18.5 \\ (0.728) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 20 \\ (0.787) \\ \hline \end{array}$	$\begin{gathered} 1.0 \\ (0.039) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.055) \end{gathered}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} 65 \\ (2.293) \\ \hline \end{gathered}$
FA1A223Z	$\begin{array}{\|c\|} \hline 16.0 \\ (0.630) \\ \hline \end{array}$	$\begin{gathered} 25.0 \\ (0.984) \end{gathered}$	$\begin{gathered} \hline 5.1 \\ (0.2) \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ (0.016) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.047) \end{gathered}$	$\begin{gathered} 5.0 \\ (0.197) \end{gathered}$	$\begin{gathered} 7.5 \\ (0.265) \\ \hline \end{gathered}$
FA1A104Z	$\begin{array}{\|c\|} \hline 28.5 \\ (1.122) \end{array}$	$\begin{gathered} 25.5 \\ (1.004) \end{gathered}$	$\begin{aligned} & \hline 10.2 \\ & (0.4) \end{aligned}$	$\begin{gathered} \hline 0.6 \\ (0.024) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.055) \end{gathered}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} 32 \\ (1.129) \end{gathered}$
FA1A224Z	$\begin{array}{\|c\|} \hline 36.5 \\ (1.437) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 27.5 \\ (1.083) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ (0.591) \\ \hline \end{array}$	$\begin{gathered} 1.0 \\ (0.039) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.4 \\ (0.055) \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} 55 \\ (1.940) \\ \hline \end{gathered}$
FA1A474Z	$\begin{array}{\|c\|} \hline 44.5 \\ (1.752) \\ \hline \end{array}$	$\begin{gathered} 28.5 \\ (1.122) \end{gathered}$	$\begin{array}{c\|} \hline 20 \\ (0.787) \end{array}$	$\begin{gathered} 1.0 \\ (0.039) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.055) \end{gathered}$	$\begin{gathered} 9.5 \\ (0.374) \end{gathered}$	$\begin{gathered} 83 \\ (2.928) \end{gathered}$

Note: Weight values are typical.

Part Number	Max. Rated Voltage (VDC)	Nominal Capacitance		Max. Current at 30 minutes (mA)	Max. ESR (at 1 kHz) (Ω)
		Charge System (F)	Discharge System (F)		
FA0H473Z	5.5	0.047	0.075	0.071	20
FAOH104Z	5.5	0.1	0.16	0.15	8
FAOH224Z	5.5	0.22	0.35	0.33	5
FAOH474Z	5.5	0.47	0.75	0.71	3.5
FAOH105Z	5.5	1.0	1.6	1.5	2.5
FA1A223Z	11	0.022	0.035	0.066	20
FA1A104Z	11	0.1	0.16	0.30	8
FA1A224Z	11	0.22	0.35	0.66	6
FA1A474Z	11	0.47	0.75	1.41	4

Specifications

Item		Specification		Test Conditions Conforming to JIS C 5102 ${ }^{-1994}$			
Operating Temperature Range		$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$					
Maximun Rated Voltage		5.5 VDC, 11.0 VDC					
Nominal Capacitance Range		0.047 to 1.0 F (Refer to standard ratings)					
Capacitance Allowance		+80 \%, -20 \%		See characteristics measuring conditions			
Equivalent Series Resistance		See standard list		See characteristics measuring conditions			
Current (30-minute value)		See standard list		See characteristics measuring conditions			
Temperature Variation of Characteristics	$\begin{aligned} & \text { At min. temp. } \\ & \binom{-25^{\circ} \mathrm{C}}{\text { Step } 2} \end{aligned}$	Capacitance	More than 70% of initial value	Conforms to 7.14 Phase $1:+25 \pm 2.0^{\circ} \mathrm{C}$ Phase 2 : $-25 \pm 2.0^{\circ} \mathrm{C}$ Phase 3 : $+25 \pm 2.0^{\circ} \mathrm{C}$ Phase 4 : $+70 \pm 2.0^{\circ} \mathrm{C}$ Phase 5 : $+25 \pm 2.0^{\circ} \mathrm{C}$			
		Equivalent Series Resistance	Not to exceed 3 times initial value				
	At max. temp.$\binom{+70^{\circ} \mathrm{C}}{\text { Step 4 }}$	Capacitance	Not to exceed 150 \% of initial value				
		Equivalent Series Resistance	Not to exceed initial requirement				
		Current at 30 minutes	Not to exceed 1.5 CV (mA)				
	At room temp.$\binom{+25^{\circ} \mathrm{C}}{\text { Step } 5}$	Capacitance	Not to change more than $\pm 20 \%$ from initial value				
		Equivalent Series Resistance	Not to exceed initial requirement				
		Current at 30 minutes	Not to exceed initial requirement				
Lead Strength (Tensile)		No loosening or permanent damage of the leads		Conforms to 8.1.2 (1)			
		55 VDC	0.047 F to 0.22 F: 1 kg 10 sec				
		5.5	$0.47 \mathrm{Fto} \mathrm{1.0} \mathrm{F:} 2.5 \mathrm{~kg} 10 \mathrm{sec}$				
			0.022 f to $0.1 \mathrm{~F}: 1 \mathrm{~kg} 10 \mathrm{sec}$				
		ITVOC	$0.22 \mathrm{Fto} 0.47 \mathrm{~F}: 2.5 \mathrm{~kg} 10 \mathrm{sec}$				
Vibration Resistance				Capacitance	Meet initial requirement	Conforms to 8.2.3 Frequency: 10 to 55 Hz Test duration: 6 hours	
		Equivalent Series Resistance	Meet initial requirement				
		Current at 30 minutes	Meet initial requirement				
Solderability				$3 / 4$ or more of the pin surface should be covered with new solder		Conforms to 8.4 $230 \pm 5^{\circ} \mathrm{C}, 5 \pm 0.5 \mathrm{sec}$. Immersion depth: 2.5 mm from body	
Soldering Heat Resistance				Capacitance	Meet initial requirement	Conforms to 8.5 $260 \pm 10^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{sec}$. Immersion depth: 2.5 mm from body	
		Equivalent Series Resistance	Meet initial requirement				
		Current at 30 minutes	Meet initial requirement				
Temperature Cycle				Capacitance	Meet initial requirement	Conforms to 9.3 Temperature conitiom: $-25^{\circ} \mathrm{C} \rightarrow$ normal temperature $\rightarrow+70^{\circ} \mathrm{C}$ normal temperature Number of cycles : 5 cycles	
		Equivalent Series Resistance	Meet initial requirement				
		Current at 30 minutes	Meet initial requirement				
Humidity Resistance		Capacitance	More than 90% of initial requirement	Conforms to 9.5$\begin{aligned} & 40 \pm 2^{\circ} \mathrm{C}, 90 \text { to } 95 \% \mathrm{RH} \\ & 240 \pm 8 \text { hours } \end{aligned}$			
		Equivalent Series Resistance	Not to exceed 120 \% of initial requirement				
		Current at 30 minutes	Not to exceed 120 \% of initial requirement				
High Temperature Load		Capacitance	More than 85% of initial requirement	Conforms to 9.10 $70 \pm 2^{\circ} \mathrm{C}$ 5.5 V applied for 5 V type 11 V applied for 10 V type $1000{ }_{-0}^{48}$ hours			
		Equivalent Series Resistance	Not to exceed 120 \% of initial requirement				
		Current at 30 minutes	Not to exceed 200 \% of initial requirement				

